
@ Fermi National Accelerator Laboratory 

FERMILAB-Conf-89/142 

PAW at Fermilab 
CORE Based Graphics Implementation of HIGZ * 

Harald Johnstad 
Fermi National Accelerator Laboratory 

P.O. Box 500, Batavia, Illinois 60510 U.S.A 

June 1989 

* Presented at the 1989 Conference on Computing in High Energy Physics, Oxford, England, April 10-14.1989. 

ep 0 erated by Universities Research Association, Inc., under contract with the Unlted States Department of Energy 



PAW at Fermilab 
CORE Based Graphics Implementation of HIGZ 

Harald Johnstad 
Fermi National Accelerator Laboratoryi 

Batavia, Illinois 60510. 

Abstract 

The Physics Analysis Workstation system (PAW) is primarily intended to be the 
last link in the analysis chain of experimental data. The graphical part of PAW is 
based on BIG2 (High Level Interface to Graphics and Zebra), which is based on the 
OS1 and ANSI standard Graphic8 Kernel System (GKS). HIGZ is writtenin the context 
of PAW. At Fermilab, the C0B.B based graphics system DI-3000 by Precision Visuals 
Inc., is widely used in the anlaysis of experimental data. The graphical part of the PAW 
routines has been totally rewritten and implemented in the Fermilab environment. 

1 Introduction 

Pemonal workstation8 equipped with a 1 Mbit bitmap display, a speed of more than.1 MIPS, 
with at least 4 Mbytes of main memory and 150 Mbyt es of local disk space are now available 
for less than 10.000 dollars, for example on a VAXstation 2000 or an Apollo DN3000. 

In order to exploit the full functionality of such workstations, the Physics Andy8y8 
Workstation (PAW) project [l] was launched at CERN in the beginning of 1986. 

The PAW environment ia optimized to assist physicist8 in the analysis and presentation 
of data. It provide8 interactive graphical presentation and statistical and mathematical 
tools. PAW has been designed to exploit the good response time of workstations with their 
powerful graphics capabilities and attractive u8er interface in integrated environments. Good 
communication8 between large mainframes, used as centralized CPU’8 and file 8erver8, and 
the workstations, are an important attribute of this system. 

Workstations are generally part of a computer network. PAW allow8 for remote login and 
remote shell command8 via the TCP/IP protocol (Trm8mi88iOn Control Protocol/Internet 
Protocol). This allow8 for file transfer between computers at execution time of 1 Mbyte or 
more per sec. 

The first public release of the GKS implementation of PAW was made at the beginning of 
1988 at CERN. The Fermilab implementation of PAW, with the graphics interface completely 
rewritten for the DI-3000 graphics system, ~a.8 released at the end of 1988. 

‘Fermilab is operated by Universities Research Association, Inc., under contract with the U.S. Department 
of Energy 



2 

2 HIGZ - High Level Interface to Graphics and Zebra 

An European effort was launched in the early 80’s to restrict High Energy Physics users to 
using only graphics systems which mediate the transition from user programs to devices in 
a standardized way. This would allow for the portability of applications programs between 
systems using standard graphics. 

However, the acceptance of the GKS standard outside Europe was seen as rather modest 
at the time when the PAW system was launched at CERN. Also GKS does not offer effective 
solutions to many requirements in the High Energy Physics community, and to the graphical 
output of PAW in particular. For example, recording large volumes of graphical information 
in compact form with a convenient access method, is not an integral part of GKS. 

When the PAW project was launched at CERN, it was therefore decided to define a 
graphics interface, called HIGZ (High Level Interface to Graphics and Zebra), to be written 
in the context of PAW [2]. 

3 GKS - Graphics Kernel System 

The Graphical Kernel System (GKS) is an international standard, adopted by the Inter- 
national Standards Organization (ISO), and by the American National Standards Institute 
(ANSI), for a 2D interactive graphics system. GKS provides for true portability of graphics 
code. The GKS Appendix E and the ANSI Computer Graphics Metafde (CGM) Standard 
format allow graphics information to be transported between different computer systems in 
a transparent way. 

A GKS defined object undergoes a series of transformation that map the primitives 
from the world coordinate system to the device coordinate system of each workstation. The 
normalization transformation maps primitives from the user-defined world coordinate system 
to the normalized device coordinate system. The normalized device coordinate unit square 
is defined to be in the range (0,O) to (1,l) in X and Y. 

The workstation transformation maps images from the normalized device coordinate 
system to the device coordinate system. The boundaries of the workstation window must 
fall within the normalized device coordinate unit square in the range (0,O) to (1,l) in X and 
Y. 

Graphical pictures are defined using graphical output primitives, drawing primitives and 
text primitives. Each type of output primitive has an associated set of primitive attributes. 
Output primitives are defined in a 2D world coordinate system. 

GKS accepts graphics input using logical input functions, and using a physical input 
device. 



3 

4 DI-3000 - Device Independent Graphics System 

DI-3000 is based on the CORE graphics system [3]. CORE is a predecessor to GKS, but 
was never itself standardized, and many incompatible implementations were produced. The 
lower level of CORE is similar to GKS. The higher level of CORE is different from GKS. 

DI-3000 is an integrated system of graphics software tools for 2D and 3D graphics, dc- 
veloped by Precision Visuals Inc., Boulder, Colorado. The primary feature of DI-3000 is 
its device independence, by which the application program references one or more virtual 
graphics devices; the application program user chooses a physical graphics device to be asso- 
ciated with the referenced virtual device at program load time. Several virtual devices may 
be referenced simultaneously. 

The application program defines graphics objects using 2D or 3D graphics output prim- 
itives, such as moves, draws, characters, polygons, etc. Primitives may be defined in a 2D 
or 3D absolute or relative world coordinate system. These primitives are the fundamental 
building blocks that generate an image on a graphics device. Output primitives can be 
drawing primitives or text primitives. 

Each type of output primitive has an associated set of primitive attributes, different for 
drawing and text primitives. Drawing attributes are used to define the general characteristics 
of the various drawing primitives. Each attribute is deiined by a device independent integer 
index number. Text primitives d&e character strings that are output as graphics primitives 
on a graphics display device. 

An object in its 3D world coordinate system undergoes a series of transformations that 
map the object onto the display surface of a physical graphics device. The viewing pipeline 
perform four distinct transformations: 

The modeling transformation manipulates the object within the 3D world system, such 
as scaling, rotation, translation, and shearing. 

The viewing transformation maps primitives from the world coordinate system to the 
virtual coordinate system, mapping 3D objects to a 2D or 3D image. The virtual coordinate 
system is usually 2D and has units in the range (-1,-l) to (1,l) in X and Y. For devices that 
support a 3D virtual device interface, DI-3000 can defme a 3D virtual coordinate system, 
with its units in the range (-1,-l) to (1,l) for X, Y, Z. 

For 2D applications, the viewing transformation maps a rectangular window in the world 
coordinate XY-plane into a rectangular viewport in the virtual coordinate system. For 3D 
applications, defining the viewing transformation involves defining the position, orientation, 
and line of sight of a virtual camera in the 3D world coordinate system. 

The image transformation manipulates the image of an object on 2D or 3D virtual device 
surface by scaling, rotation, and translation. 

The device transformation is the final step in the viewing pipeline and consists of mapping 
the object from virtual coordinates to physical device coordinates. The device transformation 
allows the application program to display an object concurrently on several devices that have 
different display dimensions, and yet have the object sized appropriately to each display. 



4 

DI-3000 supports graphics input using several virtual input fucntions, such as button, 
locator, valuator, keyboard, stroke and pick. A device driver sends the virtual input request 
to a physical input device. Several input devices may be used, such as cross hair cursor, 
light pen, tablet, and mouse. 

DI-3000 supports device independent metafdes, which are transportable among devices 
and among DI-3000 installations. The DI-3000 metafile is a graphics device, which has 
the virtual device number 0, and which has its own special device driver. Pictures from 
DI-3000 metafiles may be postprocessed using a metafile translator. DI-3000 supports the 
Precision Visuals’ proprietary metafile (PVIM) format. Conversion from CGM format to 
PVIM format, and from PVIM format to CGM format is also fully supported. 

5 HIGZ with DI-3000 

DI-3000 has been in use at Fermilab since before GKS became an ANSI and OS1 world 
graphics standard. A large user community at Fermilab and associated universities had 
made strong commitments towards using DI-3000 for long term projects at the time the 
PAW project was launched at CEKN. It was therefore decided to adapt the GKS based 
HIGZ graphics interface to the totally different DI-3000 graphics system. 

Since the HIGZ calling sequences are identical to those of GKS, all the HIGZ routines 
with calls to GKS routines could be isolated on the HIGZ source PAM fde in collaboration 
with CERN. The translation could then be made by completely rewriting a well defined 
set of routines (known as the ID13000 routines), and at the same time insist that the PAW 
developers at CERN would not introduce GKS calls elsewhere in HIGZ, or any of the other 
integrated packages of the PAW system. This quickly became an exercise in collaborative 
efforts between two major High Energy Physics laboratories on software development, which 
turned out to be very successful. 

The HIGZ/DI-3000 uses GKS parameters in many locations, with the DI-3000 parameters 
deeply bidden within subroutines. The following is a summary of these conversions. 

The GKS virtual square ranges from (0,O) to (1,l) in X and Y, whereas the DI-3000 
virtual square ranges from (-1,-l) to (1,l) in X, Y, Z. The HIGZ/DI-3000 virtual mapping 
is performed into the (0,O) to (1,l) quadrant in X and Y for 2D graphics, thus using only a 
subset of the DI-3000 virtual space. 

As mentioned above, DI-3000 uses device number 0 for the DI-3000 metafile. This forced 
a redefinition of the metafile control routine, IGMETA, in HIGZ. 

HIGZ/DI-3000 uses the concept of a ‘primary’ device, usually device number 1. The 
device initially selected by the HIGZ initialization routine, IGSSE, is deemed the ‘primary’ 
device in HIGZ/DI-3000, and graphics scaling and positioning are done with respect to the 
corresponding set of parameters for viewport and window transformations. 

Secondary devices may be initialized from within the application program. The graphics 
output to secondary devices is scaled to present the entire viewspace of device number 1 on 



5 

each secondary device. This is a minor inconvenience where different device aspect ratios 
are involved. 

HIGZ/DI-3000 supports both HIGZ and DI-3000 metafilea. 

Color index numbers 0 through 7 are interpreted as GKS values. These numbers are 
translated internally into DI-3000 numbers, using a translation table for the defined colors: 
normal, red, green, yellow, blue, magenta, cyan, white, and compliment respectively. 

GKS color intensities, red, green, and blue, are translated into the the corresponding 
DI-3000 values for: hue, saturation, and lightness respectively. 

Certain color changes in GKS, such as associations between graphics elements types (line, 
marker, text), are usually not possible in DI-3000, and a global color change is done instead. 

The polygon interior style used by HIGZ/GKS is somewhat different from that used in 
HIGZ/DI-3000. This is not a major concern, other than that some macro input files to PAW 
may have to be edited before they can be used by a DI-3000 application. 

The linestyle and linewidth attributes are essentially the same in the GKS and the DI- 
3000 implementations of HIGZ, except that a ‘dashdot’ line in GKS becomes a ‘longdash’ 
line in DI-3000. Nonvalid values used by HIGZ/GKS, have been protected and reset to 
defaults in HIGZ/DI-3000. 

Not all marker values scale in HIGZ/DI-3000, some internal HIGZ marker values override 
the DI-3000 values. 

Text attributes are not always the same in HIGZ/GKS and HIGZ/DI-3000. For example, 
text vertical justification values in GKS ranges from 0 to 5 (normal, top, cap, half, base, 
bottom), and ranges from 1 to 3 (bottom, center, top) with HIGZ/DI-3000. These differences 
have been mapped by choice. 

6 Implementation of HIGZ and PAW at Fermilab 

The DI-3000 versions of HIGZ and PAW have been implemented successfully, with the 
exception of a few choices of mapping of attributes as outlined above. PAW using HIGZ/DI- 
3000 was first released at Fermilab at the end of 1988 when the ID13000 routines in HIGZ 
became an integrated part of the HIGZ source PAM file, now being distributed from CERN. 
Fermilab has the responsibility for maintenance, bug fixing and further development of the 
DI-3000 dependencies in the PAW system. 

PAW with DI-3000 is being used with a large number of drivers for workstations, as 
well as terminals. The many drivers in use include Codonics, Tektronix, Tektronix color, 
Envison, Macintosh, Talaris, Seiko, VT240, VT340, VAXstation, and PostScript (Apple 
LaserWriter). Several bugs in the various graphics device drivers software had to be fixed 

‘during the development of HIGZ/DI-3000. 

PAW with HIGZ/DI-3000 is being used in production at Fermilab on VAX/VMS and 
Amdahl with VM/CMS, and at a number of collaborating institutions. It is expected that 



6 

the attractive and advanced features of this system, will be used by most experiments at 
Fermilab for several years to come. 

Various HIGZ/GKS implementations have been used at Fermilab as well, mainly for 
testing purposes. The performance report between HIGZ/GKS and HIGZ/DI-3000 show no 
significant differences. 

7 Future Plans 

Future plans include adding full 3D capabilities in HIGZ and PAW with DI-3000, graphics 
application with DECwindows, X windows, and VAX/ULTRIX; remote login, remote file 
sharing (with Unix), using TCP/IP, and hopefully OS1 (Open System Interface) in the 
future. 

8 Conclusions 

HIGZ has been implemented successfully at Fermilab in the DI-3000 CORE based graphics 
environments with no major performance differences with the original CERN HIGZ/GKS 
implementation. 

The CERN/Fermilab collaboration on this project has been constructive and fully suc- 
cessful. 

Acknowledgements 

It is a pleasure to thank L.Roberts for invaluable help in sorting out bugs and fixes during 
the evolution of this project. Thanks are due to E.Lessner and A.Napier for constructive 
criticism and numerous testing of ElIGZ/DI-3000 and PAW on several different systems and 
devices. Thanks are also due to the Graphics Support group at Fermilab for advice on the 
usage of DI-3000, in particular to C.O’Reilly for fixing bugs in the DI-3000 drivers, and for 
help with the color attribute routine. Thanks also to P.Constanta-Fanourakis for her advice 
on usage of the DI-3000 normalization routines. 

Finally, it is a pleasure to thank R.Brun, F.Carminati, O.Couet, and P.Zanarim, at 
CERN for tremendous help and patience in the many discussions and questions on the 
implementation, testing, and distribution of this product. 

I wish to express my sincere thanks to my wife for her silent patience during long, solitude 
hours during the development of this project. 



7 

References 

[l] R. Brun, 0. Couet, N. Cremel, C. Vandoni, P. Zanarini, PAW - Physics Analysis 
Workstation, CERN Program Library 8121, September, 1988. 

[2] R.Brun, O.Couet, C.Vandon& P.Zanarini, PAW, a General Purpose Portable Software 
Tool for Data Analysis and Presentation, This Conference. 

[3] The CORE Graphics System, SIGGRAPH-ACM Computer Graphics 13, 3, (August 
1979). 


